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Abstract—This paper presents a non-coherent wireless com-
munication receiver design for intercepting and demodulating
frequency hopping spread spectrum (FH-SS) signals. This in-
terception receiver is based on phase modulation to amplitude
modulation conversion (PM to AM), and is specifically designed
for demodulating a slow frequency-hopped signal that has dif-
ferentially encoded phase shift keying (DPSK) modulation. The
intercept receiver uses a bank of bandpass filters at the front
end. Matlab simulations show that if a signal has a signal to
noise ratio (SNR) greater than approximately 30 dB (where the
bandwidth (BW) of each of the intercept filters in the simulation
is five times the message bit frequency) , the intercept receiver
can demodulate it by using an approach based on PM to AM
conversion and adaptive pattern recognition. The performance
of the receiver is characterized with simulations and analytical
calculations.

Index Terms—Frequency Hopping Spread Spectrum, nonco-
herent detection, digitally modulated signals, DBPSK

I. INTRODUCTION AND BACKGROUND

Frequency hopping spread spectrum (FH-SS) is a type
of Low Probability of Intercept communications [1], [2].
The messages are difficult to intercept because the intercept
receiver must first synchronize to the pseudorandom hopping
sequence before demodulating the data [3]. Circular Equivalent
Vulnerable Distance (CEVR) methods can be used to quantify
the operational level of LPI systems [4]. The CEVR describes
a radius area within which the transmitter is vulnerable to
interception. A numerical example using this method for FH-
DPSK is found in [4]. In this paper, we describe a method
for intercepting FH-SS signals when differential phase shift
keying (DPSK) is the modulation scheme. Performance of
slow frequency hopping multiple-access networks using DPSK
is found in [5]. The system block diagram for the model of a
FH-DPSK communication system is found in Fig 1.

Much of the unclassified literature related to FH-SS in-
terception applies to the detection, not demodulation, of
spread spectrum signals [6]. This focus on detection and not
demodulation is perhaps because an interception method’s
performance is typically judged by its ability to determine
if a transmission has occurred and not whether the message
can be decoded or the source located. Coherent and non-
coherent receiver structures for interception of FH-SS signals
are presented in [7]. An optimal interceptor for FH-DPSK
based on the maximum likelihood principle is found in [8].
The vulnerability of BPSK Direct Sequence (DS) spread spec-

trum waveforms to code clock extraction from bandlimitation
induced envelope fluctuations has been described in [2].

This paper presents a FH-DPSK demodulator design that
can intercept and demodulate the received signal with no
synchronization to the hopping sequence or data sequence.
The front end of our intercept receiver is similar to a filter-
bank combiner (FBC) which is commonly used to intercept
frequency-hopped signals [4]. Unlike [4], however, our method
does not use an integrator after the filtering and square-law
operation. The receiver uses a bank of filters to induce phase
modulation to amplitude modulation (PM to AM) conver-
sion [2] and then makes decisions about when bit changes
have occurred based on a novel algorithm that combines
the information from a bank of narrowband filters. A usual
narrowband assumption is made (the information bandwidth
is much smaller than the hopping bandwidth) [9]. The process
of combining filter bank information and interpreting it permits
decoding of the bits and the interpretation is done with pattern
recognition (PR). In our intercept receiver, the main parameters
that are of interest are: detection signal to noise ratio (SNR),
total message time or hop time, and the spread spectrum band-
width, (i.e. span or hop frequency spacing). The assumptions
of this research and optimum signal characteristics for this
receiver are as follows:

1) Individual hopping frequencies are unknown
2) Dwell times and bit epochs are unknown
3) There is no external synchronization available
4) The hopping span is estimated [10]
5) hopping is applied to the signal at bit transitions
6) Each bit is composed of an integer number of carrier

waves
7) modulation is DPSK
8) The signal is slow frequency hopped such that there are

many data bits per hop [11]
9) The first bit following a carrier frequency hop does not

contain data (delay assumption)

Section II discusses the PM to AM conversion, Section III
discusses how the PM top AM conversion is used to intercept
the FH-DPSK signals, Section IV describes the performance
and Section V is a closing summary

II. PM TO AM CONVERSION

It is well known that a phase-modulated signal is converted
into a signal with partial amplitude modulation when it is
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Fig. 1: Block diagram of a conventional synchronous FH-
DPSK transmitter and receiver system

passed through a narrow band filter or channel [12]. For BPSK,
the filter output signal is the impulse response convolved with
the sequence of BPSK waveforms as given by (1).

y(t) =
N∑
p=1

(∫ ∞

−∞
sip(τ)hp(t− τ)dτ

)
(1)

Convolution inside the summation causes a symbol to bleed
into the next symbol’s time epoch, creating inter-symbol
interference (ISI) which is manifested as envelope fluctuations.
In this case, ISI is a good thing because we use it to detect
the bit transitions. The analysis shows that destructive ISI
interference only occurs when bit changes occur. If a bit
change does not occur the interference is constructive and the
ISI actually compensates for the slow ramp-up of the output
of the envelope out of a linear filter. This compensation has
the effect of canceling out the dip in the envelope.

III. USING PM TO AM CONVERSION FOR
INTERCEPTING SLOW FH DPSK SIGNALS

The basic idea is that the received RF signal is passed
through a parallel bank of narrowband filters to create PM
to AM conversion. The resulting waveforms are processed in
a multi-step algorithm. The number of filters in the bank is
governed by the span of the FH signal and the bandwidth
of the filters. As more filters are required, a commensurate
increase in hardware and software processing is needed. The
PR decoding algorithm’s three primary operations: Data Rep-
resentation, Feature Vector selection, and Classification [13]
and their respective steps will now be discussed along with
the simulation results for a particular scenario.

The simulation example presented in this paper has the
following parameters: The signal is composed of 9 bits with 3
bits per hop. The data vector: [011110000] was encoded and
transmitted at a rate of 100 bps with hopping frequencies of
2700, 5900, and 2200 Hz. The received SNR is 45 dB and the
detector has a bank of ten filters (each with a passband BW
of 500Hz and center frequencies at 1800, 2300, 2800, 3300,
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Fig. 2: FH-DPSK Interception Receiver filter bank outputs;
BW = 500 Hz for each filter
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Fig. 3: Envelope data to be used as input to the PR system

3800, 4300, 4800, 5300, 5800, and 6300). The output of the
PM to AM inducing filter bank is shown in Fig 2.

A. Data Representation

1) Step 1: Format filter bank output

The front-end of the intercept receiver is a bank of narrowband
filters. The output of each of these filters is processed using a
Square-law-detector to form the envelope of each filter output
in the filter bank. This method squares the signal, low pass
filters the square, and then finds the square root. Fig 3 shows
the envelope functions of the waveforms of Fig 2.

B. Feature Vector Selection

For the feature vector, two PR class memberships are iden-
tified: 1) a bit change and/or frequency hopping has occurred,
or 2) a bit change and/or frequency hopping has not occurred.
This combines the analog envelope information from each of
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Fig. 4: Concatenated Envelopes of Fig 3

the filters in the filter bank and produces a digital data vector
that combines distinctive features that identify bit change and
frequency hopping boundaries. In simple terms, it looks at
each envelope and decides if there is a dip large enough to be
considered an amplitude modulation, and hence, a bit change.
Each filter in the filter bank will create a vector that contains
an envelope value for each time sample. Hypothesis testing
is used for making the detection decision. The detector must
have a criterion for making a decision on each point so the
K-means clustering algorithm was chosen [14].

2) Step 2: Concatenate the envelopes from the N filters to
produce a single vector

The envelopes are first concatenated into a single vector so that
all of the filters are clustered with the same resolution. Fig 4 is
a graph of the envelopes in Fig 3 concatenated together. The
dashed lines indicate the approximate beginning and ending
of the individual filter outputs.

3) Step 3: Cluster vector into 3 clusters

The concatenated envelope function is clustered using K=3.
This is plotted in Fig 5.

4) Step 4: Separate the clustered vector into the original N
vectors

After clustering, the concatenated vector is separated back
into N vectors. These vectors will represent the clustered
versions of the N filter envelopes. Fig 6 is a plot of the
separated clustered vector that was derived from the data in
Fig 5.

5) Step 5: Sum the N clustered vectors in parallel

This method of combining the filter bank information com-
bined with the next step is one of the novelties of this research.
Fig 7 shows the results of summing the N filter banks in
parallel. Typically, interception receivers using a bank of filters
would, for a given time sample, select the largest signal from
all of the filters and use that for further processing [11].The
novelty of this method is that all of the filter data from the
bank is used.
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Fig. 5: Clustered envelope from Fig 4
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Fig. 6: Separating the clustered vector from Fig 5
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Fig. 7: Summing the N clustered filter banks from Fig 6 in
parallel
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Fig. 8: Mapping the summed vector of Fig 7 into two values

6) Step 6: Map the summed vector to either a zero or a one

This is the step that identifies the features. The output is
a vector that is the same length as the input vector. The first
point is arbitrarily assigned to be a one. With the exception
of the first point, the algorithm compares every data point in
the vector to its most previous data point. If the two values
differ, a zero is assigned to that point. If the two values are
the same, a one is assigned to that point. Essentially, this is a
logical AND operation. Fig 8 shows the result of performing
Step 6 using the data in Fig 7.

C. Feature Classification

The features in this system now consist of zeros and ones
and close inspection of Fig 8 reveals that the zeros are grouped
into clusters. Each of these clusters represents either a bit
transition or a frequency hop. The time between clusters
represents some integer number of epochs. The classifier
model in this algorithm has three main functions: 1) identify
clusters of zeros, 2) estimate the epoch length, 3) decode the
bits.

In order to decode the bits, the algorithm must have a good
estimate of the epoch length, and in order to have a good
estimate of the epoch length, the algorithm must be able to
accurately identify clusters of zeros in the pattern. The K-
means algorithm is very useful for clustering, but one must
have a priori knowledge of the number of clusters. In this case,
the interceptor does not know how many bits or hops are in
the frame so the K-means algorithm is not especially helpful
here. Another method of clustering the zeros was therefore
developed for the classifier model.

The authors have developed an unsupervised learning algo-
rithm that uses a recursive method to converge upon the epoch
length. The present algorithm is not completely unsupervised
in the strictest sense because currently the intercept receiver
operator is responsible for changing variables if the epoch does
not converge correctly. The optimization of the PR system
could be a future area of research.
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Fig. 9: Step 7 illustrated
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Fig. 10: Clustering the zeros of Fig 8

7) Step 7: Identify clusters of zeros with an adaptive sliding
window and represent each cluster with a single zero

Clusters of zeros in Fig 8 are identified using a sliding
window that is a scaled length of the current bit epoch estimate
(2) (see Step 8 for bit epoch estimate).

window length = scale factor×current epoch estimate
(2)

The window is slid across the data to the right and stops
when the left edge of the window is on a zero. Then all
bits within the window except for the left most zero bit are
converted to ones. The window continues sliding until its left
edge finds another zero and the process repeats. Step 7 is
illustrated in Fig 9. Fig 10 illustrates applying Step 7 to Fig
8.

8) Step 8: Using the distance between zeros, make an esti-
mate of the epoch time and calculate a running average
of the epoch

For this decoding algorithm to work properly, it is im-
perative that an accurate estimate of the epoch be derived.
Since the epoch is unknown, the PR system must learn it
using input to the system. This part of the decoding algorithm
was not optimized although it converged in the simulations.
Convergence is a topic for future research.
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Fig. 11: Making a new estimate of the epoch

The initial estimate of the epoch is chosen as follows:
The algorithm first finds the longest distance between phase
change/frequency hop indicators (which will be referred to
as zeros). It then divides this by a number, C, and uses this
as the initial epoch estimate. Choosing C=2 has produced
good results. This epoch estimate is used to cluster the zeros
for the first frame (see Step 7). After clustering the zeros,
the algorithm uses the distance between zeros to make a
second estimate of the epoch. Specifically, the algorithm finds
the distance between these zeros and chooses the minimum
distance as the new estimate of the epoch. It does however
ignore the distance between the last zero and the end of the
vector. Fig 11 illustrates the frames epoch estimation process.
Ideally, one would want to look at the distances between zeros
and choose an epoch estimate that is an integer number of all
of the distances.

A weighted version of each frame’s epoch estimate con-
tributes to a running average, and this running average is used
to cluster the zeros for the next frame’s Step 7. A block
diagram of the proof of concept convergence algorithm is
found in Fig 12.

In the example problem, Fig 11, the weighted epoch esti-
mate from this vector is 150. This was found by multiplying
0.8 (the weight value) by the frame epoch estimate, 176. The
running average of the epoch estimate is 164. This is the result
of averaging 15 frame’s epoch estimates. Fig 13 shows the
individual epoch estimates from each of the frames in the
example, and Fig 14 shows how the running average estimate
of the epoch converged.

9) Step 9: Using the running average estimate of the epoch,
estimate the number of bits occurring between each zero

A vector is created that gives the distances between zeros.
These distances are divided by the running average of the
epoch estimate. This will indicate how many epochs occur
between zeros. The example problem illustrates this operation
in Fig 15. The running average of the epoch estimate will
typically not divide evenly into the distances between zeros,
so the numbers are rounded. Rounding these numbers to the
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Fig. 13: Example epoch estimates from the frames (Point A
in Fig 12)
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Fig. 14: Convergence upon the weighted true epoch (Point B
in Fig 12)

closest integer results in an output vector of:
Step 9 output vector = [3 2 1 1 1 1]

10) Step 10: Create a differential sequence from the estimated
number of bits data and the knowledge of where the zeros
occur

Now it is shown why this decoder is made to work with
differentially encoded bits. The algorithm uses the vector from
Step 9 to recreate the transmitted differential sequence. If the
vector from Step 9 indicates three bits before a phase change/
frequency hop indicator then the first three bits of the recreated
differential sequence are assigned to be either all ones or all
zeros. Although this mapping is arbitrary, assume for further
discussion that ones were assigned. If the vector from Step
9 has a two for its next number, the next two bits in the
recreated differential sequence are assigned to be zeros (the
complement of the previous mapped bits). If the vector from
Step 9 has a one for its next number, the next bit in the
recreated differential sequence is assigned to be a one (the
complement of the previous mapped bits). The vector from
Step 9 is thus used to recreate the differential sequence. Table
I recreates the differential sequence of the example problem.
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TABLE I: Assigning differential bits based on Step 9

Bin Bin Bin Bin Bin Bin
1 2 3 4 5 6

Bits/Bin 3 2 1 1 1 1
Differential Bits 1 1 1 0 0 1 0 1 0

11) Step 11: Decode the differential sequence

The same complemented XOR operation that was used to
create the original differential sequence is used to decode the
recreated differential sequence (3).

recreated differential sequence = [x1, x2, x3, x4..., xQ]
(3)

The decoded output bits are (4):

decoded sequence =
x1 ⊕ x2, x2 ⊕ x3, x3 ⊕ x4, x4 ⊕ x5..., xQ−1 ⊕ xQ

(4)

This decoding process by default will assign a zero to the
first bit following a phase change/frequency hop indicator.
Table II shows the results of decoding the differentially
encoded sequence from Table I. The X in the decoded bits
in Table II will be addressed in Step 12.

12) Step 12: Add a zero to the front of each frame’s decoded
sequence

TABLE II: Decoding the differential bits from Table I

Bin Bin Bin Bin Bin Bin
1 2 3 4 5 6

Differential Bits 1 1 1 0 0 1 0 1 0
Decoded Bits x 1 1 0 1 0 0 0 0

TABLE III: Decoded bits compared to the original message
bits

Bin Bin Bin Bin Bin Bin
1 2 3 4 5 6

Decoded Bits 0 1 1 0 1 0 0 0 0
Original Message Bits 0 1 1 1 1 0 0 0 0

First, assume that the PR system has a training algorithm
that is able to synchronize itself so that a cluster of zeros
occurs in the beginning of each frame. This means that the
beginning of each frame is a phase change/ frequency hop
indicator. This would be reflected in the algorithm in that the
output of Step 7 will have a zero for the first point of its output
vector. The decoded bits are compared to the original sent bits
in Table III.

The one error bit in this example is a bit that follows a
frequency hop. Assuming that the transmission of a 1 or a
0 is equally likely, there is a 50 percent probability that the
first bit following a frequency hop will be in error. This is
because the PM to AM conversion process in this detector
only works when adjacent bits have the same frequency. This
information is why specifications 8 and 9 were given in the
introduction. The example used to illustrate the bit detection
algorithm depicted the interception of the final 9 bits of a 135
bit sequence. The algorithm broke the 135 bit sequence into
15 frames of 9 bits/ frame. The algorithm required two frames
to train itself (18 bits). After two frames of training, the next
13 frames (117 bits) were decoded with the following results:
For the post-training frames, there were 26 error bits out of
117 total valid bits. The probability of error is 22%.

IV. DEMODULATOR PERFORMANCE

Our SNR definition was the standard ratio of signal power
to noise power in each filter. The noise is AWGN so each filter
has the same noise power output. We used relative-frequency
as the metric for correct and incorrect bits. Simulations were
performed using Matlab. Estimates of bit error probability,P e,



TABLE IV: Performance Summary

SNR Pe Ntotal Nwrong Ntraining Nfreqhops N bits
hop

Pcalculated Unpredicable error

(db) (%) (%) 100(Pcalculated−Pe)
Pcalculated

(%)

20 60 984 593 18 328 3 17 260
30 17 906 151 96 302 3 17 1.8
35 18 948 174 54 316 3 17 10
40 17 918 155 84 306 3 17 1.3
45 18 966 171 36 322 3 17 6.2
45 2 900 22 120 45 20 2.5 2.2
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Fig. 16: Predicted probability of bit error when sending 1000
bits

were obtained for various SNR values. The performance
results of the intercept receiver are found in Fig IV. When
calculating Pe, the bits in the initial training frames were
not used in any calculations. Once the system was trained,
all subsequent bits were used in performance calculations.
If the receivers bit detection algorithm decodes a frame and
concludes that there are x bits, but there were actually y bits,
the algorithm assumes that all y bits in that frame are in error.

As mentioned in Step 12, there is a 50 percent probability
that the first bit following a frequency hop is incorrect.
Knowing this and the number of hops that occurred in each
simulation case, one can make an estimate of the probability
of bit error due to frequency hops (3).

Pcalculated =
Nfreq hops

NTotal
× 1

2
(5)

The last row of Table IV shows that as the number of
bits per hop increases, the probability of bit error decreases.
According to the last column in the chart, with adequate SNR
the unpredictable errors due to the algorithm are small (less
than 11 percent). Fig 16 shows how the performance should
improve if the number of bits per hop increases. This figure
was calculated using the equation for Pcalculated from (5). As
long as there is a high SNR, the algorithm is able to obtain a
good estimate of the epoch, and the unpredictable error stays
small, (5) should be an accurate prediction of the performance
of the intercept receiver.

Table IV also shows that as the SNR falls below ap-
proximately 30 dB the probability of bit error dramatically
increases. According to the limited number of test cases, there
appears to be a SNR threshold below which this receiver
is incapable of intercepting and decoding the message bits.
Above this threshold, the receiver is extremely accurate (given
the assumptions).

When the SNR is low, the noise effectively distorts the
envelope so much that the K-means clustering algorithm
clusters many adjacent points into different classes. This adds
more zeros in the output of Step 6. It is then very difficult
for Step 7 to cluster these zeros into the proper phase change/
frequency hop indicator locations.

V. CONCLUSION

This paper has presented a novel receiver design that
intercepts and demodulates DPSK FH-SS with no synchro-
nization to the hopping sequence or data sequence. MATLAB
simulations have shown that excellent performance is obtained
when signal-to-noise ratios are greater than 30dB (where
the bandwidth (BW) of each of the intercept filters in the
simulation is five times the message bit frequency).
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