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CHAPTER 1. Introduction

Location awareness is critical for supporting location-based access control (LBAC). The

challenge is how to determine locations accurately and efficiently in indoor environments.

Existing solutions based on WLAN signal strength either cannot provide high accuracy, or are

too complicated to accommodate to different indoor environments. In this thesis, we propose

a statistical indoor localization method for supporting location-based access control. In an

offline phase, we fit a locally weighted regression and smoothing scatterplots (LOESS) model

on the signal strength received at different training locations, and build a radio map that

contains the distribution of signal strength. In an online phase, we determine the locations of

unknown points using maximum likelihood estimation (MLE) based on the measured signal

strength and the stored distribution. In addition, we provide 95% confidence intervals to our

estimation using Bootstrapping method. Compared with other approaches, for example, in

[3] and [16], our method is simpler, more systematic and more accurate. Experimental results

show that the estimation error of our method is less than 2m. Hence, it can better support

LBAC applications than others.
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CHAPTER 2. A Statistical Indoor Localization method for Supporting

Location-based Access Control

2.1 Introduction

Traditional access control systems identify and authenticate users based on something they

know (e.g., password or passphrase), something they have (e.g., access token or crypto-card),

or something they are (e.g., fingerprint or voice). However, none of these methods is perfect.

Passwords may be guessed. Tokens can be stolen, and fingerprints are vulnerable to replay.

Fortunately, the information of user location offers a new dimension for authentication and

access control. For example, to grant an access to some service, we can require that a user

be present at a specific location (e.g., in a room or office). Otherwise, the access is denied. It

is called Location-based Access Control (LBAC) [2, 6, 7], which provides more reliable access

control when combined with traditional methods. In addition, it offers the ability to trace an

intruder back to a physical location if some intrusion has been detected.

Location awareness is critical for supporting location-based access control. The challenge

is how to determine locations accurately and efficiently, especially in indoor environments. Ex-

isting indoor approaches utilize different types of signals such as infrared [15], ultrasound [10],

and radio frequency (RF) [3, 16, 11, 12, 17, 13] to estimate locations. Among these approaches,

the RF-based ones are the most promising, because they can be easily integrated with exist-

ing and widely spread 802.11 infrastructure. RF-based approaches can be further classified

depending on the metrics they measure, such as Triangulation [12], Time of Arrival (ToA)

[17], Time Difference of Arrival (TDoA) [13] and Received Signal Strength (RSS) [3, 16, 11].

Since measuring AoA, ToA and TDoA requires special hardware such as directional antennas

or fine-grained timers, localization based on WLAN signal strength seems more attractive and



3

has become more popular, which is also our focus.

Indoor localization approaches using wireless LAN signal strength approach typically con-

sist of two phases such as an offline training phase and an online localization phase. In the

offline phase, the signal strength from (or received by) different access points at different loca-

tions is recorded and used to build a radio map. Then, in the online phase, the measured signal

strength is compared with that stored in the radio map to find the best location signal-strength

match and hence determine the corresponding location. RADAR [3] measures signal strength

by averaging a number of samples received by several access points from a mobile client within

a period of time. Horus [16] identifies different causes for signal strength variations, and pro-

poses corresponding solutions to these variations. This approach makes the Horus system

complicated and imposes the need to make adjustments for each specific indoor environment.

Lim et al. [11] observed that the indoor environments are time-variant. Lim proposed using

real-time measurements for addressing environment dynamics and hence the offline phase is

unneeded in their approach. However, they adopted a simple linear model mapping between

a signal strength and the logarithm of a distance. This simple linearization is the main source

of localization errors in their approach.

In this paper, we propose a statistical indoor localization method using WLAN signal

strength for supporting location-based access control. In an offline phase, we fit a LOESS [4, 5]

local regression model on a training set to build a radio map, which stores the distribution

of signal strength. In an online phase, we determine the location using Maximum Likelihood

Estimation (MLE) [8] based on the measured signal strength and the distribution stored in the

radio map. We further exploit a Bootstrapping method [9] to estimate the confidence intervals

for our method. Compared with existing approaches, our method is simpler and more accurate

which will be illustrated in the later section. It can be generalized for any indoor environments.

Experimental results show that the estimation error of our method is less than 2m, so it can

provide better support to LBAC applications than other approaches.

The paper is organized as follows: Related work is introduced in section 2.2. In Section 2.3,

we discuss each component of our method including LOESS model, MLE and Bootstrapping
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modules in detail. Then, we present experimental results in section 2.4, and conclude in section

2.5.

2.2 Related work

RADAR [3] is a two-phase indoor localization system using WLAN signal strength. In the

offline phase, three base stations measure the average signal strength from a mobile client and

build a radio map recording locations, signal strength, and users’ directions. In the online

phase, it uses a K-nearest approach search a location in the radio map, which best matches

the measured signal strength. RADAR has high location errors, because the simple average

value cannot represent the variation of signal strength precisely. Moreover, RADAR cannot

be accommodated to different mobile clients whose signal strength is different.

Horus [16] is also a two-phase localization system. Unlike RADAR, Horus stores in the

radio map the distribution of signal strength collected by a mobile client from different access

points and determines the location using Bayes’ theorem. Horus identifies different causes

of signal strength variation and proposes corresponding solutions. For example, it uses an

autoregressive model to handle the correlation between different samples from the same access

point and utilizes a perturbation technique to deal with small-scale variation of signal strength.

To obtain a continuous location estimation, Horus exploits a time-average window to smooth

the resulting location. It achieves a high accuracy, but it is too complicated and has many

parameters that should be adjusted for different indoor environments. So, it is not systematic

for general LBAC applications.

Lim et al. observed that the indoor environments are time-variant. which means that the

environmental model learned in the offline phase may not be suitable for the data collected

in the online phase. Thus, they proposed a Zero-Configuration system [11] which updates the

environmental model continuously without an offline phase. However, this system assumes a

simple linear relationship between a signal strength value and a distance. This assumption

cannot capture the dynamic property of indoor environments accurately and become the main

source of location error.
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2.3 Our statistical method

2.3.1 Framework of location-based access control

We considered a simple application of location-based access control: Alice is an employee of

the financial department of some company. She is allowed to connect to the company’s server

from her wireless laptop and manage a database that contains the salary information of all

employees of the company. To gain access to the database (or the server), Alice must provide

not only her password, but also her location information. The company’s security policy

requires that she be present in a particular office when managing the database. It protects

the database by imposing both network access security and password privacy. Together, with

other access security such as a RADIUS server, the database is made much more secure.For

example, Bob, an attacker who manages to steal Alice’s password, could potentially connect

to the company network via wired or wireless access from anywhere on the company premises.

However, if valid database access is restricted to that specific office and a locked door prevents

his physical access, he cannot gain network access to the database.

Suppose that several access points in the company’s buildings have been equipped with

location-based access control. Further suppose that a location-based access control program has

been downloaded from the company’s server to Alice’s laptop. This program can automatically

measure the signal strength from the access points and send this measured information to the

server, when Alice logs on. The problem becomes how we could design a method to determine

Alice’s location accurately based on the measured signal strength.

2.3.2 Overview of our method

We propose a statistical method to determine locations based on the signal strength of

access points for supporting location-based access control. Statistical method has the advan-

tage of effective use of data with well developed mathematical theory as background. Fig. 2.1

illustrates the structure of our method that consists of an offline and an online phases.

In the offline phase, we first measure the signal strength received from different access

points at each known location. Then, the offline measurements are fitted into a LOESS local
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LOESS local

regression module

Maximum likelihood

estimator module

Bootstrapping

module

Estimated

location of x

95% confidence

interval of x

Offline measurements

at known locations

Offline Phase

Online Phase

Online measurements

at unknown location x

Figure 2.1 The structure of our statistical method

regression module, which builds a radio map containing the distribution of signal strength

received at each location. In the online phase, the signal strength measured at an unknown

location x is processed by a Maximum Likelihood Estimator (MLE) module based on the

distribution obtained in the offline phase to generate an estimation of location x. Meanwhile,

a Bootstrapping module outputs a 95% confidence interval for the estimated location.

Compared with existing solutions, our method has several advantages: (1) The LOESS

module produces a model independent of any physical model. So, our method does not need

to study the complicated theoretical model of signal strength in indoor environments. (2) The

MLE module has the nice properties such as asymptotic normality and asymptotic unbiased

minimum variance estimation. So, our estimation is theoretically robust, unlike Horus that

needs to be adjusted for each different environment. (3) The Bootstrapping module provides

a confidence interval for location estimation, which is more meaningful than just a single

estimation value. (4) Our method is simpler, more efficient, and has a better location accuracy.

In the rest of the section, we discuss the LOESS, MLE and Bootstrapping modules in

detail.
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2.3.3 LOESS local regression module

2.3.3.1 Introduction to LOESS

The local regression fitting method (LOESS) [4, 5] was first proposed by Cleveland in 1979.

It fits curves and surfaces to noisy data with locally weighted polynomial regression. A low

degree polynomial is fitted to each point in the data set by giving more weight to nearby points

and less to points farther away. The biggest advantage of LOESS is that it does not need to

fit a specific function to all the samples. In addition, its flexibility and simplicity make it ideal

for modeling very complex situations, when no clear theoretical model exists. This is the exact

situation for the signal strength distribution inside a building.

2.3.3.2 Detailed procedure of LOESS

Given a data set of n points {x1, y1}, ⋅ ⋅ ⋅ , {xn, yn}, the purpose of LOESS is to find a proper

polynomial regression function gi for each point {xi, yi} such that

yi = gi(xi) + �i , (2.1)

where �i is the regression error. (Note: In our localization method, xi represents a location

and yi denotes the signal strength of some access point received at xi.) The degree of the

polynomial gi is denoted by d, a pre-defined parameter. When d = 1, gi is a function of

straight line. When d = 2, yi corresponds to a quadratic model, that is,

yi = �i,0 + �i,1xi + �i,2x
2
i + �i , (2.2)

where �i,0, �i,1 and �i,2 are estimated according to the optimization criterion specified by

LOESS.

As its name, local regression, suggests, LOESS fits the regression function to each point

{xi, yi} using k (k = nq) points that are closest to {xi, yi}, where q is a smoothing parameter.

Let {xmin, ymin}, ⋅ ⋅ ⋅, {xi, yi}, ⋅ ⋅ ⋅, {xmax, ymax} denote these k closest points. Typically, we

set

min = i− ⌊k − 1

2
⌋ and max = i+ ⌊k − 1

2
⌋ . (2.3)



8

For example, when i = 5 and k = 6, we have min = 2 and max = 7, which mean that LOESS

chooses points {x2, y2}, ⋅ ⋅ ⋅, {x7, y7} to fit regression function g5 to point {x5, y5}. Equation

(2.3) is not applicable to the case that min < 1 or max > n, but we can easily find that the k

nearest points should be {x1, y1}, ⋅ ⋅ ⋅, {xk, yk}, or {xn−k+1, yn−k+1}, ⋅ ⋅ ⋅, {xn, yn}.

LOESS does not treat each of k nearest points equally. In fact, each point is assigned a

weight depending on its distance to {xi, yi}. Let dmax = max (∣xj − xi∣) denote the maximum

distance between xi and xj , for xj ∈ [xmin, xmax]. The weight for the point at xj is

w(xj) = (1− (
∣xj − xi∣
dmax

)3)3 . (2.4)

Considering the polynomial model shown in equation (2.2) and a weighted least-squares esti-

mator, LOESS needs to estimate {�̂i,0, �̂i,1, �̂i,2} that minimize the following quantity:

Q =
max∑
j=min

w(xj)(yj − (�i,0 + �i,1xj + �i,2x
2
j ))

2 . (2.5)

The corresponding minimization criteria are,

∂Q

∂�i,j
= 0 for j = 0, 1, 2. (2.6)

This estimation can also be expressed in matrix. Let us define

Y =

⎛⎜⎜⎜⎜⎜⎝
ymin

...

ymax

⎞⎟⎟⎟⎟⎟⎠ , X =

⎛⎜⎜⎜⎜⎜⎝
1 xmin x2min
...

...
...

1 xmax x2max

⎞⎟⎟⎟⎟⎟⎠ ,

�⃗ =

⎛⎜⎜⎜⎜⎜⎝
�i,0

�i,1

�i,2

⎞⎟⎟⎟⎟⎟⎠ ,W =

⎛⎜⎜⎜⎜⎜⎝
w(xmin)

. . .

w(xmax)

⎞⎟⎟⎟⎟⎟⎠ .

The weighted least-squares estimator of �⃗ is:

ˆ⃗
� = (XTWX)−1XTWY (2.7)
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It can shown that the results calculated from equations (2.6) and (2.7) are equivalent. Given

the estimation of �⃗ as

ˆ⃗
� =

⎛⎜⎜⎜⎜⎜⎝
ˆ�i,0

ˆ�i,1

ˆ�i,2

⎞⎟⎟⎟⎟⎟⎠ ,

LOESS fits a quadratic model at point {xi, yi} as

ŷi = gi(xi) = �̂i,0 + �̂i,1xi + �̂i,2x
2
i . (2.8)

The regression function gi(xi) is calculated repeatedly at every point in the data set {x1, y1}, ⋅ ⋅ ⋅ , {xn, yn}.

2.3.3.3 Choosing the smoothing parameter q

The most important two parameters controlling LOESS are d and q. Once we determine

the value of d (e.g., d = 2), q is chosen from [(d + 1)/n, 1], which controls how much amount

of data is used in each polynomial regression. However, which value of q is the best?

In our method, we determine the value of q by finding the model minimizing Akaike’s

Information Criterion (AIC) [1]. AIC is one of the most commonly used penalized model

selection criteria. One version of the bias-corrected AIC value for a LOESS model might be

AICC = log(�̂2) + 1 +
2(Trace(L) + 1)

n− Trace(L)− 2
, (2.9)

where n is the number of data points and �̂ is the standard error of data. Trace(L) is the

trace of matrix L, which is the smoothing matrix of the LOESS model. L defines the linear

relationship between the fitted and observed dependent variable values. That is, L satisfies

Ŷ = LY , (2.10)

where Ŷ can be calculated using equation (2.8).

2.3.3.4 Fitting the LOESS model using the training set

Considering a system with m access points and n known test locations, we first collect the

signal strength from all access points at each test location in an offline training phase. Our
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training set is {x1, s1,j}, ⋅ ⋅ ⋅, {xi, si,j}, ⋅ ⋅ ⋅, {xn, sn,j}, where xi for i = 1, ⋅ ⋅ ⋅ , n denotes a test

location and si,j for j = 1, ⋅ ⋅ ⋅ ,m denotes the signal strength of the j-th access point received

at location xi. The LOESS model on the training set can be expressed as

si,j = gi,j(xi) + �i,j , (2.11)

where gi,j and �i,j denote the regression function and regression error for the j-th access point

at location xi.

Then, we estimate gi,j based on the LOESS model and the chosen q. We assume that the

regression error �i,j satisfies some normal distribution, that is,

�i,j ∼ N (0, �2i,j) , (2.12)

where �2i,j denotes some variance. Thus, the signal strength also satisfies a normal distribution,

that is,

si,j ∼ N (gi,j(xi), �
2
i,j) . (2.13)

This distribution is stored in the server and will be used in MLE module to determine locations.

2.3.4 Maximum likelihood estimator module

2.3.4.1 Introduction to MLE

Maximum Likelihood Estimation (MLE) [8] was formally proposed by Fisher. Given a large

size of samples, MLE provides an unbiased minimum variance estimation and its estimates are

approximately normally distributed.

Considering a probability distribution family with a probability density (mass) function

f�, which is parameterized by unknown � (a scalar or a vector). Given a set of observations

{x1, x2, ..., xk} drawn from the distribution f�, the likelihood function for this set of observa-

tions is

L(�) = f�(x1, x2, ..., xn∣�) . (2.14)
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If the observations are independent of each other, the likelihood function can be further written

as

L(�) =
k∏
i=1

f�(xi∣�) . (2.15)

Applying logarithmic transformation to both sides of equation (2.15), the likelihood can also

be expressed as

l(�) = log (L(�)) =
k∑
i=1

log (f�(xi∣�)) . (2.16)

The maximum likelihood estimator for �, denoted as �̂, is the value that maximizes the likeli-

hood L(�) or l(�).

2.3.4.2 Location estimation using MLE

In the online phase, a user collects the signal strength s1, ⋅ ⋅ ⋅ , sj , ⋅ ⋅ ⋅ , sm from m access

points at an unknown location x. The user sends the measured signal strength to the server,

which then estimates location x using our MLE module and decides if an access should be

granted to the user.

From the LOESS fitting result and the normal distribution in equation (2.13), the proba-

bility density function fj(sj ∣x) for the signal strength sj of the j-th access point received at

location x is

fj(sj ∣x) = �N (
sj − gj(x)

�j
) , (2.17)

where gj and �j denote the regression function and the corresponding standard deviation of

the j-th access point. �N is the standard normal density function such that

�N (t) =
1√
2�
e−

t2

2 . (2.18)

The likelihood function for the set of signal strength received from all of m access points at

location x is

L(x) =
m∏
j=1

fj(sj ∣x) =
m∏
j=1

�N (
sj − gj(x)

�j
) . (2.19)

In practice, we often calculate the logarithmical likelihood

l(x) = log (L(x)) =
m∑
j=1

log (�N (
sj − gj(x)

�j
)) . (2.20)
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In our method, the server estimates location x using maximum likelihood estimator x̂,

which maximizes L(x) or l(x).

2.3.5 Bootstrapping module

Bootstrapping [9] is a statistical method for estimating the distribution of an estimator by

re-sampling the original data. With this method, we can easily compute the confidence interval

of estimation with higher accuracy than with other methods based on normal-approximation.

In the online phase, we take advantage of a Bootstrapping module to give the confidence

interval of our estimation, while neither of the approaches discussed previously can report

such a confidence interval.

The procedure of Bootstrapping module consists of two steps. In step 1, the signal strength

is re-sampled from the distribution sj(x) ∼ N (gj(x), �2j ), which are calculated in the offline

phase by the LOESS module, to get a new sampled training set. In step 2, a new estimator for

x is calculated using MLE from the new training set. Iterating these two (i.e., re-sampling and

estimating) steps usually several thousands times, we get a sample distribution for the new

estimator x̂, a 95% confidence interval is then calculated by selecting 2.5% and 97.5% quantile

values as the lower and upper bounds.

2.4 Experimental results

We evaluated the performance of our method by experiments. Our experiments consisted

of two parts. In the first part, we focused on one-dimensional estimation. In the second part,

we tested our method in a two-dimensional scenario.

2.4.1 Setup for one-dimensional experiments

In our one-dimensional experiments, we collected the signal strength from three access

points: (1) Netgear WGR614, (2) Linksys WRTSL54GS, and (3) IASTATE hot spot, which

are deployed on the third floor of Coover Hall at Iowa State University. The floor is shaped like
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a horizontally flipped “Γ” that consists of a 27.1m north-south corridor and a 30.8m east-west

corridor. Fig. 2.2 shows the floor plan.

We placed the Linksys and Netgear access points at the two ends of corridors, while the

IASTATE access point controlled by Iowa State University, was hung on the ceiling at the

center of the floor. Along the middle line of the corridors, we selected 48 different points to

measure signal strength, where the distance between the points was 1.23 meter. These points

belong to two sets with equal size of elements. One is a training set used to build a radio map,

and the other is a test set used for location estimation. The points were selected and placed

into the two sets alternately. That is, the points of odd index such as 1, 3, 5, ⋅ ⋅ ⋅, 47 belong to

the training set, while the test set contains the points of even index such as 2, 4, 6, ⋅ ⋅ ⋅, 48.

We measured the signal strength of different access points using a Dell Inspiron 8200 laptop,

which was equipped with Windows XP, NetStumbler software, and a Linksys WUSB54GP

external wireless adapter. NetStumbler is a tool for Windows that facilitates detection of

Wireless LANs using the 802.11b, 802.11a and 802.11g WLAN standards. Fig. 2.3 shows a

snapshot of NetStumbler. At each of the 48 points, the signal strength of every access point

was measured every 0.5 second for one minute interval (i.e., 120 samples per access point).

The median of these 120 samples was adopted for final analysis. Fig. 2.4 plots the median of

signal strength of different access points at all of the 48 points, which are identified by their

distance to the location of the Netgear access point.

2.4.2 LOESS local regression on training set

We utilize the statistical computing package R [14] to perform LOESS local regression

on the training set. The degree of regression function is d = 2 and the value of smoothing

parameter q is determined based on AIC metric as described in Section 2.3.3.3. Fig. 2.5 shows

the LOESS regression results with 95% confidence interval of three access point built upon the

training set. Comparing the curves shown in this figure with those in Fig. 2.4, we can see that

the LOESS model built upon the training set fitted will with the signal strength features of

each access point.
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2.4.3 Maximum likelihood estimation on test set

We apply MLE to the test set and estimate the location of each test point. Estimation

accuracy is evaluated by the difference between the estimated locations and the true ones.

Fig. 2.6 plots the likelihood function of signal strength received at point 18.5m, where the

estimated location is determined by the peak of the likelihood curve. In this figure, the peak

of the likelihood curve occurs at location 18.3m, so we obtain the estimated location of this

point and can further derive the estimation error for this point as 18.5− 18.3 = 0.2m.

In Fig. 2.7, we give out the estimation results for all the test points with 95% bootstrapping

confidence intervals. From this figure, we can see that the confidence interval for point 18.486m

is [15.682m, 21.543m]. That is, we have a 95% confidence to say that the true location of this

point is in this range [15.682m, 21.543m].

We further plot the experimental cumulative distribution function (CDF) of MLE error of

our method in Fig. 2.8. From the figure, it is easy to know that 25% of test points have a

location error around 0.7m, while 50% with error around 1.7m and 75% with error around

2.5m. We compare the location error of our method with that of others and show the results

in Table 2.1. From the table, we can see that the estimation accuracy of our method is higher

than that of RADAR [3] by 40%∼60% and Lim’s approach [11] by 30%.

2.4.4 Impact of changing the size of training set

It is not surprising that increasing the size of training set, i.e., choosing more points to

build the radio map, can reduce estimation error, because the LOESS model is built from

more information about the environment. However, our experimental results do show that the

performance of our method is not affected by the changes of the size of training set very much.

Table 2.1 Comparison of one-dimensional location error

25% 50% 75%

RADAR 1.92m 2.94m 4.69m

Lim’s method 0.97m 2.57m 3.56m

Our method 0.69m 1.71m 2.53m
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We change the size of training set by adjusting the distance between the training points.

For example, if we reduce the distance from 2m to 1m, the size of training set will be doubled.

To study the impact of changing the size of training set on estimation accuracy, we show in

Fig. 2.9 that how the mean of MLE error vary as a function of the distance. Fig. 2.9 shows

that changing the distance from 1m to 6 m, that is, reducing the size of training set to 1
6 , only

increases the MLE error by 25% (from 2m to 2.5m). It implies that our method is very robust

to the changes of the size of training set. Meanwhile, in this scenario, we can save 83% of the

time for collecting the training data (we do not show the time data here). So, for our method

we can choose a relatively small size of training set as long as the level of estimation error is

acceptable.

2.4.5 Impact of changing the number of access points

Another factor affecting the performance of our method is the number of access points. If

we deploy more access points, we can expect more accurate estimations, because the LOESS

model can exploit more information to build the radio map and estimate locations.

Fig. 2.10 shows the mean of MLE error as a function of the number of access points. It

illustrates how we can improve estimation accuracy by increasing the number of access points.

For example, Fig. 2.10 shows that we can reduce the mean of MLE error by 20% (from 2m to

1.6m) if we deploy 4 extra access points (i.e., increasing the number of access points from 2 to

6). However, the improvement on estimation accuracy becomes less when there are sufficient

access points. For instance, even after we increase the number of access points from 12 to

20, we can only reduce the mean of MLE error by at most 10%. The example implies that

deploying too many access points is not necessary.

2.4.6 Setup for two-dimensional experiments

Besides the one-dimensional experiments, we also tested our method in a simple two-

dimensional scenario. The two-dimensional experiments were conducted in Room 319 of

Snedecor Hall at Iowa State University. Fig. 2.11 illustrates the experimental setup, where
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two access points (Belkin F5D 6130 and Netgear WGR614) were placed at the two sides of the

room. We selected 6 positions (Position 1 ∼ 6) as the training set for building the radio map.

As shown in Fig. 2.11, these 6 positions were 4 meters apart from each other and form two

squares. At each position, we collected signal strength for about 3 minutes and generate 180

samples. Then, we selected 50 (stable) samples out of the 180 ones for further analysis. Our

test set contained only two points (Test 1 & 2) that were near the center of each square. At

each test point, we collected signal strengths for about one minute and generated 10 samples.

When collecting signal strength, we considered the following precautions:

1. Data are collected in the middle of the night to minimize the environmental noise (human

activities, etc).

2. The antennas of both access points and the laptop’s wireless adapter were pointed ver-

tically at all time to minimize the signal variation caused by antenna orientation and

signal multipath.

3. The examiners stood fairly far from the laptop after pushing the start button in order

to minimize the multipath interference from a human.

2.4.7 Maximum likelihood estimation on test points in a two-dimensional scenario

Similar to the one-dimensional experiments, in our two-dimensional experiments, we fitted

a local regression model on the training set and estimated the location of test points using

MLE. In our test setup, we set the coordinates of Position 1 as (0, 0), where the x axis is from

right to left and the y axis is from top to bottom.

Fig. 2.12 show a log likelihood plot of test point Test 1, whose coordinates are (2.0, 2.0). In

the figure, the darkest point indicates the maximum log likelihood, which is hence the estimated

location for the test point. Fig. 2.12(a) plots the log likelihood over the entire region (the

entire room) and Fig. 2.12(b) shows the log-likelihood in the region surrounding the lowest

signal level point, whose coordinates were (2.092, 2.715).
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Table 2.2 shown the true location, estimated location, and location error for two test points.

The experimental results show that our localization method has good performance even in the

two-dimensional scenario with location errors as low as 1.55m.

Table 2.2 Two-dimensional estimation results

Point True location Estimation Error

1 (2.0, 2.0) (2.092, 2.715) 0.72m

2 (5.0, 1.9) (6.552, 1.882) 1.55m

2.5 Conclusions and future work

We propose a statistical indoor localization method for supporting location-based access

control (LBAC). Our method uses LOESS regression to build the distribution of WLAN signal

strength and estimates locations using the MLE method. In addition, our method estimates

the 95% confidence interval by utilizing the Bootstrapping module. Compared with others,

our method is simpler and provides a higher accuracy. It does not need to in incorporate with

any physical model for indoor signal strength and can even produce a meaningful confidence

interval for its estimation. The experimental results show that the estimation error of our

method is less than 2m. Hence, it can better support LBAC applications than the other

localization approaches we analyzed.

Our method can be applied to two-dimensional or three-dimensional localization with al-

most no changes. We tested our method in a simple two-dimensional scenario and we plan to

conduct more experiments on two-dimensional and three-dimensional estimation in the future.

We will also study how to utilize real-time information updates to our LOESS model.



18

Figure 2.2 The floor plan of Coover Hall for one-dimensional experiments,

where the stars are access points and the black blocks represent

the training and test points.

Figure 2.3 A snapshot of NetStumbler
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Figure 2.4 The signal strength of three access points measured at different

points
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Figure 2.5 The LOESS regression models of three access points with 95%

confidence interval
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Figure 2.11 The setup for two-dimensional experiments at Snedecor Hall

319, Iowa State University
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(a) Entire region (b) The region surrounding point (2.092,

2.715) with the maximum log likelihood -
52.20

Figure 2.12 The log likelihood for point Test 1 at location (2.0, 2.0), where

(a) is the plot for the entire region and (b) is the plot for the

region surrounding the darkest point at (2.092, 2.715) that has

the maximum log likelihood -52.20
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APPENDIX A. Selections Of R Code

A.1 Basics Functions

#c a l c u l a t e l i k e l i h o o d , r e s u l t w i l l be used on opt imize

LL <− f unc t i on (P, S , Los )

{

Result <− 0

f o r (AP in 1 : l ength (APs) )

{

TheLo <− Los [ [AP ] ]

ThePredict <− p r e d i c t (TheLo , newdata=P, se=TRUE)

#the f i t t e d value

m <− ThePred i c t$ f i t

#the se

se <− ThePredict$se

TheS <− TheLo$s

TheSd <− s q r t (TheSˆ2+se ˆ2)

Result <− Result + log (dnorm(S [AP] , mean=m, sd=TheSd ) )

}

re turn ( Result )

}
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#want to wr i t e a func t i on to f i n d the maximum l i k e l i h o o d

MLE1 <− f unc t i on (S , Range=c ( 0 . 5 , 6 0 ) , Los=PartLo . L i s t . 1 ,TheAcu=0.001)

{

re turn ( opt imize (LL , Range , t o l=TheAcu , maximum=TRUE, S=S , Los = Los ) )

}

l o e s s . a i c <− f unc t i on ( x ) {

i f ( ! ( i n h e r i t s (x , ” l o e s s ” ) ) ) stop (” Error : argument must be a l o e s s ob j e c t ”)

# e x t r a c t va lue s from l o e s s ob j e c t

span <− x$pars$span

n <− x$n

traceL <− x$trace . hat

sigma2 <− sum( x $ r e s i d u a l s ˆ2 ) / (n−1)

de l t a1 <− x$one . d e l t a

de l t a2 <− x$two . d e l t a

enp <− x$enp

a i c c <− l og ( sigma2 ) + 1 + 2∗ (2∗ ( traceL +1)) / (n−traceL −2)

#aicc1<− n∗ l og ( sigma2 ) + n∗ ( ( de l t a1 /( de l t a2 ∗(n+enp ) ) ) / ( de l t a1 ˆ2/ de l t a2 )−2 )

a icc1<− n∗ l og ( sigma2 ) + n∗ ( ( de l t a1 / de l t a2 )∗ ( n+enp )/( de l t a1 ˆ2/ de l t a2 )−2 )

gcv <− n∗ sigma2 / (n−traceL )ˆ2

r e s u l t <− l i s t ( span=span , a i c c=aicc , a i c c 1=aicc1 , gcv=gcv )

re turn ( r e s u l t )

}

bes tLoes s <− f unc t i on ( model , c r i t e r i o n=c (” a i c c ” , ” a i c c1 ” , ”gcv ”) , spans=c ( . 5 , . 9 5 ) ){

c r i t e r i o n <− match . arg ( c r i t e r i o n )



27

f <− f unc t i on ( span ) {

mod <− update ( model , span=span )

l o e s s . a i c (mod ) [ [ c r i t e r i o n ] ]

}

r e s u l t <− opt imize ( f , spans )

l i s t ( span=result$minimum , c r i t e r i o n=r e s u l t $ o b j e c t i v e ) }

LogLike l ihood . 1 <− f unc t i on (TheLo , S , Range=c (5 , 50 ) , By = 0 . 1 )

{

NewP <− seq ( Range [ 1 ] , Range [ 2 ] , by=By)

ThePredict <− p r e d i c t (TheLo , NewP, se=TRUE)

#the f i t t e d value

m <− ThePred i c t$ f i t

#the se

se <− ThePredict$se

TheS <− TheLo$s

TheSd <− s q r t (TheSˆ2+se ˆ2)

re turn ( l og (dnorm(S , mean=m, sd=TheSd ) ) )

}

A.2 MLE Functions

PartLo . L i s t . 1 <− NULL

#c a l c u l a t e the l o e s s model f o r the four h a l f data

f o r ( i in 1 : 4 )
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{

Data <− DataList . 1 [ [ i ] ]

Data . Sub <− Data [ sub . 1 , ]

templo <− l o e s s ( S i gna l ˜ Pos i t ion , data=Data . Sub )

blo <− bes tLoes s ( templo )

templo <− l o e s s ( S i gna l ˜ Pos i t ion , data=Data . Sub , span=blo$span )

PartLo . L i s t . 1 <− c ( PartLo . L i s t . 1 , l i s t ( templo ) )

}

names ( PartLo . L i s t . 1 ) <− Names

By <− 0 .1

TestS <− 8

Range <− c (1 , 50 )

NewP <− seq ( Range [ 1 ] , Range [ 2 ] , by=By)

l i k e l i h o o d <− rep (0 , l ength (NewP) )

No .AP <− c (4 )

f o r ( i in No .AP)

{

#the p lo t to i d e n t i f y the data

templ <− LogLike l ihood . 1 ( PartLo . L i s t . 1 [ [ i ] ] , DataList . 1 [ [ i ] ] $S igna l [ TestS ] , Range=Range , By=By)

p lo t ( templ˜NewP, ylim=c (−10 ,0))

l i k e l i h o o d <− l i k e l i h o o d + templ

}

p lo t ( l i k e l i h o o d ˜NewP)
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DataList . 1 [ [ 1 ] ] $Pos i t i on [ TestS ]

P1 <− NewP[ which . max( l i k e l i h o o d ) ]

#c a l c u l a t e the maximum l i k e l i h o o d p o s i t i o n more acu ra t e l y

By <− 0 .01

Range <− c (P1−1,P1+1)

NewP <− seq ( Range [ 1 ] , Range [ 2 ] , by=By)

l i k e l i h o o d <− rep (0 , l ength (NewP) )

f o r ( i in No .AP)

{

#the p lo t to i d e n t i f y the data

templ <− LogLike l ihood . 1 ( PartLo . L i s t . 1 [ [ i ] ] , DataList . 1 [ [ i ] ] $S igna l [ TestS ] , Range=Range , By=By)

p lo t ( templ˜NewP)

l i k e l i h o o d <− l i k e l i h o o d + templ

}

p lo t ( l i k e l i h o o d ˜NewP)

DataList . 1 [ [ 1 ] ] $Pos i t i on [ TestS ]

NewP[ which . max( l i k e l i h o o d ) ]

A.3 Bootstrap Code

#the boots t rapp ing con f idence i n t e r v a l

#paramatr ic boots t rapp ing

#the number o f boots t rapp ing

NoB <− 2000
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#need to do 4 f o r a l l 4 a c c e s s po in t s

BootSignal <− NULL

f o r ( i in 1 : 4 )

{

a <− p r e d i c t ( PartLo . L i s t . 1 [ [ i ] ] , s e = TRUE)

m <− a $ f i t

the . sd <− PartLo . L i s t . 1 [ [ i ] ] $s

tempBoot <− matrix ( rnorm ( length (m)∗NoB, mean=m, sd=the . sd ) , byrow=TRUE, nrow=NoB)

BootSignal <− c ( BootSignal , l i s t ( tempBoot ) )

}

Pos i t i on <− Median . 1 [ [ 1 ] ] $Pos i t i on [ sub . 1 ]

BootResult <− NULL

APs <− c ( 1 , 2 , 3 , 4 )

f o r (BNO in 1 :2000)

{

l o . boot <− NULL

f o r ( i in 1 : 4 )

{

S igna l <− BootSignal [ [ i ] ] [ BNO, ]

templo <− l o e s s ( S i gna l ˜ Pos i t i on )

b lo <− bes tLoes s ( templo )

templo <− l o e s s ( S i gna l ˜ Pos i t ion , span=blo$span )

l o . boot <− c ( l o . boot , l i s t ( templo ) )

}
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TheResult <− NULL

f o r ( TestP in sub . 2 )

{

By <− 0 .1

Range <− c (1 , 59 )

NewP <− seq ( Range [ 1 ] , Range [ 2 ] , by=By)

l i k e l i h o o d <− rep (0 , l ength (NewP) )

f o r ( AP in APs)

{

templ <− LogLike l ihood . 1 ( l o . boot [ [AP] ] , Median . 1 [ [AP ] ] $S igna l [ TestP ] , Range=Range , By=By)

#p lo t ( templ˜NewP, ylim=c (−10 ,0))

l i k e l i h o o d <− l i k e l i h o o d + templ

}

#f i n d the maximum pos i ton

#make i t more acurate

P1 <− NewP[ which . max( l i k e l i h o o d ) ]

By <− 0 .01

Range <− c (P1−0.1 ,P1+0.1)

NewP <− seq ( Range [ 1 ] , Range [ 2 ] , by=By)

l i k e l i h o o d <− rep (0 , l ength (NewP) )

f o r ( AP in APs)

{

templ <− LogLike l ihood . 1 ( l o . boot [ [AP] ] , Median . 1 [ [AP ] ] $S igna l [ TestP ] , Range=Range , By=By)

#p lo t ( templ˜NewP)
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l i k e l i h o o d <− l i k e l i h o o d + templ

}

#plo t ( l i k e l i h o o d ˜NewP)

TheResult <− c ( TheResult , NewP[ which . max( l i k e l i h o o d ) ] )

}

BootResult <− rbind ( BootResult , TheResult )

}

save ( BootSignal , BootResult , f i l e =”c :∖∖ BootResult . 3 . dat ”)

TheBootResultQuanti le <− matrix ( rep (0 ,3∗24) , nco l =3)

f o r ( i in 1 : 2 4 )

{

TheBootResultQuanti le [ i , ] <− q u a n t i l e ( BootResult [ , i ] , probs=c ( 0 . 0 2 5 , 0 . 5 , 0 . 9 7 5 ) , )

}

p lo t ( RealP , r . 1 2 3 4 [ , 2 ] )

f o r ( i in 1 : 2 4 )

{

po in t s ( c ( RealP [ i ] , RealP [ i ] ) , c ( TheBootResultQuanti le [ i , 1 ] , TheBootResultQuanti le [ i , 3 ] ) ,

l t y =2, type=”o ” , pch=” ”)

}

po in t s ( RealP , TheBootResultQuanti le [ , 1 ] , pch=”−”)

po in t s ( RealP , TheBootResultQuanti le [ , 3 ] , pch=”−”)

po in t s ( RealP , RealP , pch=5)

p l o t ( RealP ˜ RealP , pch=5)

#the CDF of the e r r o r s o f f i t t i n g by 10 po in t s

#I should try
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p lo t ( ecd f ( abs ( RealP − r . 1 2 3 4 [ , 2 ] ) ) )

A.4 WINBUG Code

#need AP. no , SS , EE, x . data , m. data , sigma . data , s i g n a l

inputPath <− ”Y: / Locat ionSens ing /NetStumblerData / 2 0 0 6 . 8 . 2 3 . l i b . ThirdFloor /TXT/”

S i g n a l S t r e n g t h O f f s e t <− −149

#a func t i on to get the s i g n a l date base

APs <− c (”DELL” , ” l inksysBox2 ”)

PlotFlag <− TRUE

#the func t i on to p l o t the s i g n a l s t r ength

PlotS <− f unc t i on ( NameIndex , APIndex )

{

InputFileName <− paste ( inputPath , as . cha rac t e r ( NameIndex ) , ” . out . txt ” , sep =””)

r <− read . t a b l e ( InputFileName , header=F)

colnames ( r ) <− c (”name” , ”MAC” , ”Hour ” , ”Minutes ” , ”Second ” , ” S i gna l ”)

r $S i gna l <− r $S i gna l + S i g n a l S t r e n g t h O f f s e t

r . part <− subset ( r , name==APs [ APIndex ] )

p r i n t ( nrow ( r . part ) )

p l o t ( r . part$S igna l , type=”o ”)

}

PlotS (21 ,1 )

#the func t i on come from mul t ip l e APs , i t read in the data
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S igna l Input <− f unc t i on (No , TheAPs , D e l e t e O u t l i e r s=TRUE, PLOT=FALSE)

{

Fi l e Index <− Index$I [ No ]

FileName <− paste ( inputPath , as . cha rac t e r ( F i l e Index ) , ” . out . txt ” , sep =””)

r <− read . t a b l e ( FileName , header=F)

colnames ( r ) <− c (”name” , ”MAC” , ”Hour ” , ”Minutes ” , ”Second ” , ” S i gna l ”)

r $S i gna l <− r $S i gna l + S i g n a l S t r e n g t h O f f s e t

r <− r [ Index$S [ No ] : Index$E [ No ] , ]

L <− l ength (TheAPs)

Result <− NULL

i f ( D e l e t e O u t l i e r s )

{

f o r ( i in 1 :L)

{

temp <− r [ r$name==TheAPs [ i ] , ]

#the boxplot r e s u l t

bp <− boxplot ( temp$Signal , p l o t=FALSE)

upper <− bp$stat s [ 5 , 1 ]

lower <− bp$stat s [ 1 , 1 ]

#get r i d o f the o u t l i e r s

temp <− temp [ temp$Signal > lower & temp$Signal < upper , ]

#put the temp in to r e s u l t

Result <− rbind ( Result , temp )

}

}
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e l s e

{

Result <− r

}

i f (PLOT)

{

p lo t ( Resu l t$S igna l , type=”o ”)

}

re turn ( Result )

}

TheIndex <− seq (42 , 546 , by=42)

TheIndex <− c (21 , TheIndex , 561)

L <− l ength ( TheIndex )

S <− rep (0 ,L)

E <− rep (0 ,L)

Index <− data . frame ( TheIndex , S , E)

colnames ( Index ) <− c (” I ” , ”S” , ”E”)

Index [ 1 , 2 : 3 ] <− c (51 ,150)

Index [ 2 , 2 : 3 ] <− c (150 ,249)

Index [ 3 , 2 : 3 ] <− c (231 ,330)

Index [ 4 , 2 : 3 ] <− c (80 ,179)

Index [ 5 , 2 : 3 ] <− c (51 ,150)

Index [ 6 , 2 : 3 ] <− c (51 ,150)

Index [ 7 , 2 : 3 ] <− c (51 ,150)

Index [ 8 , 2 : 3 ] <− c (51 ,150)
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Index [ 9 , 2 : 3 ] <− c (1 ,100)

Index [ 1 0 , 2 : 3 ] <− c (71 ,170)

Index [ 1 1 , 2 : 3 ] <− c (1 ,100)

Index [ 1 2 , 2 : 3 ] <− c (51 ,150)

Index [ 1 3 , 2 : 3 ] <− c (41 ,140)

Index [ 1 4 , 2 : 3 ] <− c (51 ,150)

Index [ 1 5 , 2 : 3 ] <− c (51 ,150)

#k <− 15

#A <− 1

#PlotS ( Index$I [ k ] , A)

In f o <− data . frame ( as . cha rac t e r ( TheIndex ) , TheIndex , row . names=NULL)

#sk ip should be done a f t e r input the data In f o <− In f o [ c ( 1 : ( skipped −1) , ( sk ipped +1):nrow ( In f o ) ) , ]

L <− nrow ( In f o )

TheN <− 100

TotalData <− NULL

R<− NULL

f o r ( i in 1 :L)

{

r <− S igna l Input ( i , APs , PLOT=PlotFlag )

r [ ” Distance ” ] <− In f o [ i , 2 ]

r [ ” Group ” ] <− In f o [ i , 1 ]

TotalData <− rbind ( TotalData , r )

m. d e l l <− mean( r [ r$name==”DELL” , ] $S igna l )
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sigma . d e l l <− sd ( r [ r$name==”DELL” , ] $S igna l )

md. d e l l <− median ( r [ r$name==”DELL” , ] $S igna l )

m. l i n k s y s <− mean( r [ r$name==”l inksysBox2 ” , ] $S igna l )

sigma . l i n k s y s <− sd ( r [ r$name==”l inksysBox2 ” , ] $S igna l )

md. l i n k s y s <− median ( r [ r$name==”l inksysBox2 ” , ] $S igna l )

md <− median ( r$S i gna l )

temp <− c ( In f o [ i , 2 ] ,m. d e l l , md. d e l l , sigma . d e l l , m. l i nk sy s , md. l i nk sy s , sigma . l i n k s y s )

R <− rbind (R, temp )

}

NewPoints <− seq (21 ,561 , by=1)

R <− data . frame (R, row . names=NULL)

colnames (R) <− c (” Distance ” , ”M. d e l l ” , ”Md. d e l l ” , ” sigma . d e l l ” , ”M. l i n k s y s ” , ”Md. l i n k s y s ” , ” sigma . l i n k s y s ”)

#without sk ip

#Del l

Ratio <− 1.005/21

R$Distance <− R$Distance∗Ratio

NewPoints <− NewPoints∗Ratio

TotalData$Distance <− TotalData$Distance ∗Ratio

d e l l .md. l o <− l o e s s (Md. d e l l ˜ Distance , data=R, span =0.4)

d e l l .md. p r ed i c <− p r e d i c t ( d e l l .md. lo , newdata=NewPoints , se=T)

p lo t ( S i gna l ˜ Distance , data=TotalData , subset= (name==”DELL”) , xlab=”Distance (m)” , ylab=”S igna l Strength (dB)” , main=”S igna l Strength f o r Access Point DELL” )

po in t s ( d e l l .md. p r e d i c $ f i t ˜NewPoints , type=” l ”)

po in t s (Md. d e l l ˜ Distance , data=R, c o l=”red ” , pch=4, cex=3)
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#Linksys

l i n k s y s .md. l o <− l o e s s (Md. l i n k s y s ˜ Distance , data=R, span =0.4)

l i n k s y s .md. p r ed i c <− p r e d i c t ( l i n k s y s .md. lo , newdata=NewPoints , se=T)

p lo t ( S i gna l ˜ Distance , data=TotalData , subset= (name==”l inksysBox2 ”) , xlab=”Distance (m)” , ylab=”S igna l Strength (dB)” , main=”S igna l Strength f o r Access Point Linksys ” )

po in t s (M. l i n k s y s ˜ Distance , data= R, c o l=”red ” , pch=4, cex=3)

po in t s ( l i n k s y s .md. p r e d i c $ f i t ˜NewPoints , type=” l ”)

skipped <− 3

R. sub <− R[ c ( 1 : ( skipped −1) , ( sk ipped +1):nrow (R) ) , ]

#p lo t o f d e l l

d e l l .md. l o <− l o e s s (Md. d e l l ˜ Distance , data=R. sub , span =0.4)

d e l l .md. p r ed i c <− p r e d i c t ( d e l l .md. lo , newdata=NewPoints , se=T)

p lo t ( S i gna l ˜ Distance , data=TotalData , subset= (name==”DELL”))

po in t s ( d e l l .md. p r e d i c $ f i t ˜NewPoints , type=” l ”)

po in t s (Md. d e l l ˜ Distance , data=R, c o l=”red ” , pch=4, cex=3)

#p lo t o f l i n k s y s

#the l o e s s f i t f o r the l i n k s y s data

l i n k s y s .md. l o <− l o e s s (Md. l i n k s y s ˜ Distance , data=R. sub , span =0.4)

l i n k s y s .md. p r ed i c <− p r e d i c t ( l i n k s y s .md. lo , newdata=NewPoints , se=T)

p lo t ( S i gna l ˜ Distance , data=TotalData , subset= (name==”l inksysBox2 ”) )

po in t s (M. l i n k s y s ˜ Distance , data= R, c o l=”red ” , pch=4, cex=3)

po in t s ( l i n k s y s .md. p r e d i c $ f i t ˜NewPoints , type=” l ”)
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#use the maximum l i k e l i h o o d to es t imate the p o s i t i o n

D i f f . x <− NULL

f o r ( skipped in 2 : 1 4 )

{

R. sub <− R[ c ( 1 : ( skipped −1) , ( sk ipped +1):nrow (R) ) , ]

d e l l .md. l o <− l o e s s (Md. d e l l ˜ Distance , data=R. sub , span =0.4)

d e l l .md. p r ed i c <− p r e d i c t ( d e l l .md. lo , newdata=NewPoints , se=T)

l i n k s y s .md. l o <− l o e s s (Md. l i n k s y s ˜ Distance , data=R. sub , span =0.4)

l i n k s y s .md. p r ed i c <− p r e d i c t ( l i n k s y s .md. lo , newdata=NewPoints , se=T)

x . data <− NewPoints

m. data <− rbind ( d e l l .md. p r e d i c $ f i t , l i n k s y s .md. p r e d i c $ f i t )

sigma . data <− rbind ( d e l l .md. p r e d i c $ s e . f i t , l i n k s y s .md. p r e d i c $ s e . f i t )

s i g n a l <− R[ skipped , c ( 3 , 6 ) ]

s i g n a l <− c ( signal$Md . d e l l , signal$Md . l i n k s y s )

l l <− NULL

f o r ( i in 1 : l ength ( NewPoints ) )

{

thex <− x . data [ i ]

t h e l <− 1

f o r ( j in 1 : l ength ( s i g n a l ) )

{

temp .m <− m. data [ j , i ]

temp . sigma <− sigma . data [ j , i ]

temp . s <− s i g n a l [ j ]

temp . d <− dnorm( temp . s , mean=temp .m, sd=temp . sigma )

t h e l <− t h e l ∗temp . d
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}

l l <− rbind ( l l , c ( thex , t h e l ) )

}

l l <− data . frame ( l l )

colnames ( l l ) <− c (” x ” , ”L”)

p l o t (L˜x , data=l l , main=”L ike l i hood Plot ”)

ind <− which . max( l l $ L )

D i f f . x <− rbind ( D i f f . x , c ( R$Distance [ sk ipped ] , x . data [ ind ] ) )

}

#change the un i t to meters

D i f f . x <− data . frame ( D i f f . x )

colnames ( D i f f . x ) <− c (” x ” ,” xp ”)

D i f f . x [ ” D i f f ” ] <− D i f f . x$xp− D i f f . x$x

p l o t ( xp˜x , data=D i f f . x , main=”Est imation Plot ”)

p l o t ( D i f f ˜x , data=D i f f . x )

p l o t ( D i f f . x$Di f f , type=”s ” , data=D i f f . x )

p l o t ( ecd f ( D i f f . x$Di f f ) )

#the winbugs code part

#need AP. no , SS , EE, x . data , m. data , sigma . data , s i g n a l

AP. No <− l ength (APs)

EE <− l ength ( NewPoints )

x . data <− NewPoints

m. data <− rbind ( d e l l .md. p r e d i c $ f i t , l i n k s y s .md. p r e d i c $ f i t )

sigma . data <− rbind ( d e l l .md. p r e d i c $ s e . f i t , l i n k s y s .md. p r e d i c $ s e . f i t )

s i g n a l <− R[ skipped , c ( 3 , 6 ) ]



41

s i g n a l <− c ( signal$Md . d e l l , signal$Md . l i n k s y s )

#the whole problem i s f o r the median es t imate

path <− ”Y: / Locat ionSens ing /NetStumblerData / 2 0 0 6 . 8 . 2 3 . l i b . ThirdFloor /R/”

BugFileName <− ” bugscode1 . bug”

BugFile <− paste ( path , BugFileName , sep =””)

DataList <− l i s t (”AP. No” , ”EE” , ”x . data ” , ”m. data ” , ” sigma . data ” , ” s i g n a l ”)

parameters <− c (” x ”)

IN <− f unc t i on ( )

{

l i s t ( xx=300)

}

BugsResult <− bugs ( DataList , i n i t s=IN , parameters , BugFile , n . cha ins =1, debug=F, n . i t e r =1000 , n . th in =1, n . burnin=0)

x <− BugsResult$sims . l i s t $ x

h i s t ( x )

summary( BugsResult )

#c a l c u l a t e o f l i k e l i h o o d

l l <− NULL

f o r ( i in 1 : l ength ( NewPoints ) )

{

thex <− x . data [ i ]

t h e l <− 1
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f o r ( j in 1 : l ength ( s i g n a l ) )

{

temp .m <− m. data [ j , i ]

temp . sigma <− sigma . data [ j , i ]

temp . s <− s i g n a l [ j ]

temp . d <− dnorm( temp . s , mean=temp .m, sd=temp . sigma )

t h e l <− t h e l ∗temp . d

}

l l <− rbind ( l l , c ( thex , t h e l ) )

}

l l <− data . frame ( l l )

colnames ( l l ) <− c (” x ” , ”L”)

p l o t (L˜x , data=l l )

which . max( l l $ L )
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